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This article is included here because, like the foregoing,
it is concerned with a programming technique for error

plements well the previous article, for as that one pro-
vides a valuable technique in the accurate simulation of
the translational motion of a body, this one discusses an
important formulation of coordinate transformation which
is essential to the accurate simulation of the attitude be-
havior of a rotating body. Though the mathematics be-
hind the technique is less than simple, the eventual
computer program is elegant and the advantage to be
- gained from the use of the program suggests that it be
~ serjously considered in any simulation of moving bodies
where  rotation and coordinate transformations are im-
portant. M

ABSTRACT

The use of quaternions in describing the orientation
of a rigid body allows all possible attitudes to be sim-
ulated. The problem of gimbal lock encountered
when -using-the more commonly understood Euler
angles is avoided. The analog implementation of the
quaternion description is given together with the
transformations between quaternion parameters and
Euler angles in order that the latter may be available
ior display.
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reduction in a very important class of problems. It com- -
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INTRODUCTION

In simulations of the motion of a rigid body not con-
sidered as a point mass, it is necessary to represent
the orientation of the body with respect to some de-
tached reference frame—not only to keep track of its
change with time, but also to permit the effect of
forces, which are readily defined relative to the body,
to be transformed for inclusion in translational equa-
tions of motion specifying velocity components and
consequent position relative. to the reference frame.
For this purpose a frame of three orthogonal axes is
defined within and fixed to the body, and its rotation
with respect to the detached reference frame is sim-
ulated in terms of appropriate components of the
corresponding spin vector.

For illustration consider the typical computational
loop shown in Figure 1 where the interchange be-
tween the two frames is readily appreciated. If we
begin with the translational velocity vector defined
by components (u,,v,, w,) in the reference frame, a
transformation to body-fixed components (u,, v, Wp)
allows the determination of the angles of attack (a)
and sideslip (8), commonly used to determine the atti-
tude of the body with respect to the airstream. With
a knowledge of the aerodynamic coefficients, the
body-related components of force (X, Y,, Z;) can be
obtained from the angles of attack and sideslip, and
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- the translational velocity. The loop is closed by re-
solving these body-related components of force to
equivalent components in the detached reference
frame, so that they may be integrated to produce the
components of velocity with which we began.

The orientation of a rigid body is commonly speci-
fied by the three nonorthogonal Euler angles of yaw,
pitch, and roll (y, 8, ¢), which permit the reference
frame to be aligned by successive rotations with the
" ‘body-fixed frame. These angles are computed by in-
_tegrating the components (P, Q, R) of the spin vector

according to the standard gimbal equations:

= (Rcos ¢ +Qsin ¢)/cos §
f=— —Rsing+ Qcosy
¢=P+ysin

1

The equations themselves forecast a computa-
tional difficulty (inherent in any 3-angle specification
of orientation) known as gimbal lock, for if the sec-
ond.angle 4 approaches +90 degrees, the rates of
change of angles y and ¢ (in this case, yaw and roll)
approach infinity. A change in the order of the se-

quence of rotations helps. in some simulation situa-
tions where it can be assumed one of the three angles
does not vary beyond a range +70 degrees. Making
that angle the second one of the sequence avoids the
difficulty, but, for the general case where this re-
striction is not permissible, the addition of redundant
variables is essential if glmbal lock is not to compli-
cate the simulation.

One well-known formulation? uses nine direction
cosines to replace the three Euler angles, an expen-
sive computational procedure because six additional
constraining equations (those of orthonormality) are

-added. Commonly the set of equations employed has

six differential equations with three constraints, plus
three algebraic equations' for the three remaining
direction cosines.

Intuitively it seems that it should be possible to
solve the computational difficulty by adding a single
redundant variable. Rather than adding one variable
to the three Euler angles it is better to define four

quaternion parameters. This note discusses this set

of parameters, and in particular provides the re-
lationships which permit the Euler angles (which are
typically used to display the orientation of the body)
to be computed from them. The simplicity of the
corresponding analog computer. diagrams is also
demonstrated
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Figure 1-Computational Loop Showing Vector Component Transformation
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QUATERNIONS

Euler showed that the orientation of one frame of
axes with respect to another is uniquely determined
by a single rotation § about a particular direction S.
The chosen direction S can be specified by the three
angles of inclination «, B, y which it makes with the
axes of the reference frame, and thus we have four
.parameters ‘to establish the orientation. The single
constraint equation in this four parameter system is:

- cos?a 4~ cos?B +- cosPy =1 2)

In place of the commonly-used sequence of Euler
angles for moving the reference frame to the body-

parameters can be stated as:
1. Rotate the reference frame, using an orthogonal
~ matrix A of direction cosines, to cause the X-
axis to be aligned with the chosen direction S.
2. Rotate around direction 5 through an angle 8.
3.-Rotate through an inverse matrix A~ until the
frame is aligned with the body-fixed axes. =
Clearly both the direction of S and the value of §
- must be chosen to cause the alignment — Euler
. showing that it is always possible to choose appro-
- priate values. -
3 Mathematlcally the rotat:on of components (X,
»Z,) of a vector in the reference frame to equiva-
lent components (X,,Y,, Z,) in the body-fixed frame
 can be written as:
X,| - [cosem;n;||1T O 0 . ||cosa cos,@ cosy ||X,
»[==|COSB M, n,||0 cosd sind|m;, m, m,; Y,
cosy myn,||0 —sind sind.|ln, n, n, |Z,

3)

The overall transformation must.be orthonormal,
providing six independent conditions to establish the
values of the undefined dlrectlon cosines (m;, m,, m,,
n,, ny ny). %

" The form of this transformation and the equations
for computing the parameters are both simplified by
a change of variables. Let

€, == C0s (8/2) .
e, ==cosasin (8/2) 4)
- e;==cosfsin(8/2)
‘e, ==cosy sin (8/2)

2(e e, — eye5)

2(eye3 - eqe,) 2(epe5 —

fixed frame, the procedure employing quaternion

e’ e’ —e’—e’ 2epe, “I; €oe3)
2 2
e +e’l—e?—
0 2 1
€.e,)

Differential equations for the quaternion param-
eters can be obtained by considering the components
of a unit vector in the two frames when the body is
spinning, the spin vector having components (P,, Q,,
R,) in the body frame.

They are:®*

€,=— ——;—(ele +e,Q, + esR,)
élz-;—(eoP,, FeR, —eQ) (5)
ez_—z—%-(eoQb + e,P, —eR,)
e,P,)

1 :
=7(90Rb +e,Q,—

Note how the equation for e, is symmetrical in
(e, e, ;) and (P, Q, R,), and that the equations for:

" e, &, and e, can be obtained from each other by

a rotation of the components (P, Q,,

R, and
_(el, €y, €5). :

The constraint equetion becomes: _ v
e+ €2+ e fef=—1 (6)

An algebraic constraint can be applied to a set of -
differential equations by adding to each equation a

component proportional to the gradient of the square
of the constraint, & say. In this case

e=T—(e+el+efted ()
Thus in the computer program one mechamses in
p!ace of equation (5), the following:
&= ——2‘“(91”1} +e,Q, + eﬂRb) + Kee,
. 1T N
el:T(e"Pb +e,R, — e;Q;) + Kee, @
p .
82=7(60Qb + e;P, R, + Kee,

— e,P,) 4 Kee,

where K is set to a very high value.

. 1
6327(90Qb +eQ,

Note that the subscnpts (0, 1, 2, 3) are carefully chosen and ordered to establish a symmetry in. the derived
parameters. Subscript 0 is made to correspond to the rotation 8, 1 corresponds to a, 2 to 8, and 3 to Y.

This choice is better than those used in previous publications for it leads to equations and relation-
ips that are readily remembered by their symmetry.

With the substitution of these parameters, the total transformation matrix becomes:

2(e,e; — eye5)
e’ 2(eye;+ epey)
2 2 2 2
& T e’ —e’—e,
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The analog computer program which solves the where » has an instantaneous value P,/2, Q,/2 or
‘equations is given in Figure 2. The components R,/2.
(P, Q, R,) of the spin vector are obtained by a sepa- This program has been checked for accuracy in
rate integration of applied moments. Although using  constant rotation by applying values of 1 rad/sec to
sixteen (16) multipliers and four (4) squaring cards, P, Q,, and R, for an accumulated angle of 3600
it is a comparatively simple circuit. It is interesting to "degrees. The final displayed angles were in error by
note the “oscillator” loops shown by the heavy lines, less than 5 degrees, using typical analog components
the feedback around any integrator being by way of ~ with no attempt made to choose well-aligned multi-
a second integrator and an inverting amplifier. The  pliers and high-accuracy components. ’
gain in such a loop is proportional to the square of ‘
one of the components of spin. Thus whenever the
body is spinning the values of the quaternion pa- % 922
rameters change with time proportionally to sin ot, ] N

{""Hé

NORMALIZATION CONTROL §=1—3e?

= N&

Figure 2 — Integration of Body Rates to Quaternions
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'QUATERNION-EULER ANGLE TRANSFORMATION

The attitude of the body within the reference frame
must be equally determined by the quaternion pa-
rameters and the Euler angles, so there must exist an
algebraic transformation from one to the other. As
there are four quaternion parameters and only three
Euler angles, the transformation can be expressed
in four different ways, indicating that, to obtain a
particular single-valued expression, additional con-
straints must be stated and implemented on the
computer.

If one permits the Euler angles to have all values
from —= to =, there is within them a two-fold
ambiguity (two sets of values for ¢, 8, ¢ which rep-
resent the same condition). To avoid this ambiguity,
it is common to consider the pitch angle, §, to have
values only within the range —#/2 < 0 < + /2.
Then as the pitch angle passes through —=/2, all
angles are considered to change by =. For example,
as the small increment ¢ goes through zero,

Y==2x/3 —x/3
O=n/2+¢ { = ; —n/2+¢ 9)
¢=—n/4 +3x/4

These jumps in value present difficulties in any

nents are computed for use in transformations of
force vectors. Thus, it is common to use the sines and
cosines of the angles which are continuous functions,
and derive the angles themselves simply for display
purposes.

The' transformation matnx, expressed earlier in
terms of the quaternion parameters, can also be
. stated in terms of the Euler angles and equivalently
direction cosines: i.e.

L L 4
m, my, my
ny ny, ng

1, ==cosy cosf
fy==sing cosd
£3= —sind
== cosy sinf sinp — siny cose
m2 siny sinf sing - cosy cose
my == cos#f sing
n, == cosy sind cosy -}- siny sing
Ny, ==siny sin@ cosp— cosy sing
ng == cosf cosg
' (10)

equating the terms of these matrices to those in
e quaternion transformation given earlier, five re-
Bonships between Euler angles and the quaternion

e

simulation where the values of the angular compo- -

parameters may be used to solve for the former. The
five equations are:

2(e €5 — €,e,) ==f3=—sinf (11a)
2(e,e, + e5e,) =, =siny cosf (11b)
e, +e?—e—e? =} =cosycosd (11c)
2(ey e, -+ e,e,) == m, ==sin¢ cosf (11d)

e,> — e, —e,” + e,2 =n,=—cos¢ cosd (11e)

Provided the pitch angle 8 is restricted to the range
—7/2 < 8 < +=/2, 6 is single-valued, and a unique
inverse sine value exists—see Figure 3.

H—f]=sin"" [2(e,e, — €,€5)] (12)

The angle ¢ can be obtained from equations (11b)
and (11c¢), the latter giving:

=sin~

cosy =={,/cosd (13)

which can be satisfied by ¢ or —¢. The ambiguity

may be removed by considering the sign of siny,

which is the same as the sign of ¢ (see Figure 4).
Thus equation (13) may be written-

y==cos~1[f,/cosé] - sgn [siny] (14)
where
sgn{(x)=—+1 x>0
and ' '
sgn()=—1 x<0
From equation (11b)
sgn [f,] ==sgn [siny] - sgn [cosf] (15)
;e 6 RANGE -

g

Figure 3 — Transformation from g3 — ¢

—n/2

0 +x/2

Figure 4 — Relationship between Cosine and Sign of Sine
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Because of .the restriction on 8, cos@ is always posi-
tive so that

sgn [f,]==sgn [siny] (16)
- and hence from equation (14) :
¢ =cos™* [f,/cosf] - sgn [{;] (17)

or in terms of the quaternion parameters

2 2 N2 2
e e —e —e
Yy==cos™?! |: ' - sgn [e,e; + e,

cosf
o (18)
Similar reasoning leads to the expression for ¢
 p=cos1[ny/cosf] - sgn [my] (19)
or ,
2 2
g=cos™} [:e"f + ei; Be LS e22:| - sgn [ese; + e,el

(20)

The analog computer program for these equations
is shown in Figure 5 and some of the features are
worth noting. Only one function generator, that for

cosd, requires two amplifiers and is indicated by a -

symbol to represent both the shaping circuits and the

two amplifiers combined. By using the transforma-.

tion:

cosx = —sin [x — (v/2)]
Equation (17) becomes
| |=sin""[ —Rl/cosel + 7r/2
and the inverse sine is limited to '

—m/2 < sin~* [f/cosd] < 7'/2

Similar equations apply to |¢| and sin~! [ny/cosf].
As the functions are now monotonic over the re-
stricted range, passive diode shaping networks may
be used with a current feed to the summing junction
of the single output summing amplifier. ' '

As cosf is used as a divisor, a hard zero limit is
applied to prevent it from ever becoming slightly
negative. There are occasions when cos# is zero and
the resulting quotients are given by 0/0. At this point
¢ and ¢ are not individually defined, but ¢ + ¢ is-
constant. In typical applications, it is not essential to
enforce this constancy for cosd is zero only momen-
tarily as the pitch angle passes through 90 degrees.
Even when, as in a missile launch, the pitch angle

remains at 90 degrees for many seconds, the con-
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stancy is probably not essential for the angles are only
generated for observation and recording. Note that
when an orientation display for a manned vehicle
employs a gyro-driven “8-ball,” the drives are from
signals representing sine and cosine of the angles
rather than the angles and thus the 8-ball does not
drift, no matter the time period for whrch the pitch
angle is 90 degrees.

For the application of arbitrarily initial values, it is
useful to have expressions for the quaternion pa-
rameters in terms of given values of ¢, 6, and ¢.
Manipulation of the expressions for equivalent ele-
ments of the transformation matrix gives the follow-
ing relationships.

: y 0 6y 0 ¢

e,y=i—cos:)_coszcos2 —+sin=sin 75" 7 |

N Y8 4]

e = _cos 7 €os—sin —- — sin—sin —-cos 7 |

T v. 6 ¢ ¢ 60 ¢

€=k _cos — sin 5cos— —+sin — €os—sin 7
T y 0 ¢ ¥ 6 ¢]
€y ==+ __—cos2 sin —>-sin - -+ sin 2 cc?s,2 cos—
21

One may choose to use either the positive or the

negative sign, provided the same sign is used for
all parameters.

CONCLUSIONS

Quaternions have the advantage of avoiding gimbal

lock, allowing simulation of a tumbling vehicle, and

are readily implemented with simple analog pro-

grams. At the same time, particularly if servo-multi-

pliers are used, the reduction in frequency by a factor .
of two will reduce phase shift problems compared

to a direction-cosine mechanization.

Interpretation of quaternions in terms of body
attitude is not simple, but a transformation to Euler
angles is practical and requires only a small amount
of analog equipment. The accuracy obtained by the
use of quaternions in vector transformation is com-
parable with that available by any other procedure..
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